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L INTRODUCTION

W henever acceleration is imposed on a fluid flow either by acceleration of a body or by acceleretion
externally imposed on the fluid, additional fluid forces will act on the surfaces in contact with the fluid
These fluid inertial forces cen be of considerable importance in many ocean engineering problems. The
purpose of this report is to review some of the characteristics of these fluid inertial forces and, in pertic-
ular, to evaluate the state of knowledge of the "added mass’ matrices which are used to charecterize the
forces. The first part of the report (Section 3) is also intended to serve educetional purposes. The
second part (Section 4) reviews the existing data base and some of the areas in which there is either a
lack of data or a data base which is contradictory. It is also intended to convey the limitations of the
existing knowledge. Finally a number of suggestions for improvement in our present understanding are
listed in the conduding section

Unlike many reviews, the author has not alternpted to absorb every publication on the subject.
Rather the time which would have been spent on such an effort, was devoted to more concentrated
analysis of the subject. Other excelient reviews of vanous aspects of unsteady fluid forces exist; in par-
ticular the reader is referred to the recent books by Blevins (Ref.18) and by Sarpkaya and Iseacson

(Ref.17).
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2 GENERAL EXPLANATION OF ADDED HASS

Perhaps the simplest view of the phenomenon of "added mess” is thet it determines the necessary work
done to change the kinetic energy assodiated with the motion of the fluid. A ny motion of a fluid such
that which occurs when a body moves through it implies a certain positive, non-zero amount of

kinetic energy associated with the fluid motions. This kinetic energy, 7. can be simply represented by
=L (sl +u)dV =L
T 2.{(&*’"@*’%)‘” 2{&“" (1)

where the 2(i=1,2,3) represent the Cartesian components of fluid velocity and V is the entire
domain or volume of fluid For simplicity we shall assurne throughout that the fluid is incompressible

with a density p.

1f the motion of the body is one of steady rectilinear translation at velocity, U, through a fluid oth-
erwise at rest then dearly the amount of kinetic energy, 7, rernains constant with time. Furthermore it
is dear that T will in some manner be proportional to the square of the velocity, U, of trenslation
Indeed if the flow is such that when U is altered the velocity, 1. at each point in fluid relative to the

body varies in direct proportion to Uthen T could conveniently be expressed as
=L e TG 8
T=p3 U uhere "{u T (2

and the integrd J would be a simple invarient number. This is indeed the cese with some fluid flow
solutions such as potential flow and low Reynolds number Stokes flow. However it may not be true for

the complex, vortex shedding flows which oocur at intermediate Reynolds nurnbers.

Now consider that the body begins to accelerate or decelerate. Clearly the kinetic energy in the fuid
will also begin to change as U changes. If the body is accelerated then the kinetic energy will in all
probability increase. But this energy must be supplied, additional work must be done on the fluid by

the body in order to increase the kinetic energy of the fluid. A nd the rate of additional work required
is simply the rete of change of T with respect to time, d74#. This additional work is therefore experi-
enced by the body as an additional dreg. F, such that the rate of additional work done, —FU is simply
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equal to dTAZ If the pattern of flow is not changing such that the integral / remsains constant it fol-
lows that the "added dreg’, F, is simply

1 dT dUu (3)

Now this force has the same form and sign as that required to accelerate the mass (m) of the body
itself, namely m.%tq—. Consequently it is often convenient to visualize the mess of fluid p/, es en "added

mass’, M, of fluid which is being accelerated with the body. Of course, there is no such identifiable
fluid mass, rather all of the fluid is accelerating to some degree such that the total kinetic energy of the
fluid is increasing.

It is important to stress that F'is not the only dreg force experienced by the body. During steady
translation in a real viscous fluid there is a steady dreg assodated with the necessary work which must
be done to balance the steady rate of dissipalion of energy in the viscous fluid W hen the body
accelerates there will be a similar though not necessarily equal drag assodated with the instantaneous
value of U. Furthemwre there may be delayed ~ffeds assodaled with the entire previous history of

trandation (e.g. the Basset force, Ref.1, p.375).

2o s bl e NN s s -
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3 ANALYTICAL APPROACHES TO ADDED HASS
31 EXAMPLES: RECTILINEAR MOTION OF A SPHERE AND CYLINDER WITH POTENTIAL FLOW

In the preceding discussion the consequences of acceleration were illustrated by reference to simple rec-
tilinear motion of velocity, U. It should be dear that the methodology could be extended to more gen-
eral motions and indeed this will be camied out in the following section. But prior to this it is worth
illustrating how the integral, /, and therefore the added mass can be celculated for rectilinear motion.
For the purposes of this example let us examine the idealized potential flows pest a sphere and a
cylinder The geometry for both is as depicted in Fig.l. The sphere or cylinder of radius K is assumed
to be moving with time varying velocity (/(f) (tistime) in the positive z direction. Polar coordi-

nates (r,¥) are used where z=rcos ¥

Fig.1

Y

The resulting fhiid velocities %, us in the 7 and 43 directions are then given by a velocity potential.¢ ,

such that

=% ., _-10p
=3 WL B8 (4

and the appropriate velodty potentials in the two cases are

RS
¢.,,.=--(—ja—2——oosﬂ (5)

UR?
P qirdr =~ y o8 9

The reader who is unfamiliar with these solutions may wish to setisfy himself that two solutions setisty
(1) Laplaces equation, V % =0, in spherical and cylindrical coordinates respectively and (ii) the boun-

dary condition that the relative velodity normal to the surface of the body is zero {(%.)rag=U 08 9.

b e o
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1t follows that these flows are of the type in which v is directly proportional to U and consequently

the integrals, /, can be evaluated as

-"[ 1 2
J= —-@1 l—gf_ 1 =§_ 3
Johere:] {ol - B'r} +[Ur wnzmzsnodw 5 "R )
therefore M=§-17R3p

-a"[ 2
Cufinder: [ = { { I[IU%% —;7%%-]211!11”":1!’}?2 per it length (8)

therefore M =nR% per wnit length.

Note that the added mass, M, of the cylinder is equal to the mass of the fluid displeced by the body,
whereas the added mass of the sphere is one half of the displaced mass.

These are algebraically the simplest potential flows for which the value of / can be evaluated How-
ever. it is conceptually simple to visualize how / ._uld be evaluated for any flow provided the fiow solu-
tion (the y/U values) are available. Note that, in effect, one need only have available the solution for
the steady flow 1n the directon under consideration. This consider=bly simplifies the added mass calcu-

lation for rectilinear motion. Later we shall examine the more general case of arbitrary motion.
3.2 RELATION TO DISPLACED MASS; VARIATION WITH DIRECTION OF ACCELERATION

In the preceding section it was noted that in the ideal cese of potential flow around a crculer cylinder in
rectilinear motion the added mass is equal to the mass of fluid displaced by the cylinder. This should
be regarded as coincidental. There is no general correlation between added mass and displaced fluid

mass. As we have seen the added mass for a sphere is one half of the displaced fluid mass. Further
more the idealized potential flow past an infinitely thin flat plate (zero displaced fluid mess) accelerated

normal to itself has an added mass equal to the mass of a circular cylinder of fluid with a diameter
equal to the width of the plate.

Thus the displaced fluid rnass may not even be a good first approximation to the added mass (except

A o iy P T < .- 2 e emmae e PP
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for the case of the drcular cylinder). Furthermore we shall see that, in general, the value of the added
mass depends on the direction of acceleration. For example, the ideelized potential fiow solution for
the infinitely thin flat plate accelerated in a tangential rather than a normal direction yields zero added
meass rather than the value desaribed above. A review of the available data suggests that a better (but
still very crude) first approximation to the added mass of a body for a given direction of acceleration
would be the mass of the fluid volume obtained by taking the projected area of the body in that direc-
tion and evaluating one half of the volume of the sphere with the same projected area (see Sections

4.2, 43). An improvement on this is included in Section 4.2.

One other complication will emerge in the following section when the complete added mess malrix
is defined, namely that the force on the body due to acceleration is not necessarily in the same direction
as the acceleration. For an unsymmetric body acceleration in one direction can give rise to an “added
mass” effect resulting in a force which has a component in a direction perpendicular to the direction of
acceleration. 1f, for example, one were lifting a body from the ocean bottorn by means of a cable then

an increase in the lift rate could produce a lateral . otion of the body.
33 THE ADDED MASS MATRIX

Up to this point, most of the examples and discussion have centered on simple rectlinear motion
However in general the response of a body to an additional force applied at some point and in some
direction will not be confined to motion in that same direction. Instead there will be a general induced
acceleration of the body consisting of three transation accelerations, 4;, j=1.2.3 in three perpendicu-
lar direcions and three angular accelerations.A;, j=4,5,6. Then the added mass matrix
My, i=1+6, j=1-+6 provides a method of expressing the relationship between the six force com-
ponents, F;, imposed on the body by the inertial effects of the fluid due to the six possible components

of acceleration,:
R=-Hy4, (9)

The malrix M must have added to it the inertial matrix due to the mass of the body in order to com-

plete the formulation of the inertial forces. If the center of mass of the body is chosen as the origin the

A e v P e M R 4 -
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body mass matrix is symmetric and contains only seven different, non-zero values, namely the mass
and the six different components of the moment-of-inertia matrix [Yih, p.102). However one cennot
in general relate any of the 36 different components of the added mass matrix nor prove that any of
them are zero except in specific cases or for spedfic kinds of flow. Consequently an extemally applied
additional force will in general create acceleration in all six components of velodty and angular velocity.
Thankfully it is rarely necessary to have to handle 36 different added mass coefficients. For potential
flow one can show [Yih, p.100] that the added mass matrix must be symmetric; since the system is
then conservative the symmetry also follows from the theorem of reciprodty. This reduces the number
of coeffidents to 2l. However no further reduction is possible except for bodies with geometric sym-
metries.

The sumplifications introduced by geometric symmetries of the body are fairly easily established.
Consider for example a body with a single plane of symmetry, for example an airplane. It is dearly
convenient to select axes such that this plane of symmetry corresponds say, the z3=0 plane. Then any
acceleration confined to this plane, namely any -~mbination of A; 4, and Aq will produce no added
mass force Fu Fy or Fi the only possible non-zero forces will be Fy, F; and Fg. It follows that for
such a body the following 9 components of the added mass matrix will be zero:

My=0 for i=3,4,5; j=1,2,6 (10)

If in addition the flow is assumed to be potential such that the matrix is symmetric then M4=0 for the

same domains of iand J. The number of non-zero values required to deflne the matrix is 12, namely

Bodies which have two planes of symmetry (for example a hemisphere) yield a further reduction in
the number of non-zero values. Suppose axes are chosen such that both z,=0 and z3=0 are planes of

symmetry. Then not only must (10) be true but also
My=0 for i=2 4,6, 5j=13,5 (12)

and again, assuming potential flow M4=0 for the same dornains. Then the only non-zero values which

s ————E



need evalustion are
Mg, i=1+6 end My My (13)

The last two, which with M @=M2s and Mg=M & represent the only non-zero off-diagonal terms,
correspond to the moment about the zg axis generated by acceleretion in the zp direction and the
moment about the z, axis generated by acceleration in the z3 direction In other words since the
body is not symmetric about the zars plane linear acceleration in either the zz or zg direction will

cause pitching moments in the z,z; or x,ry planes.

A few simple bodies such as a sphere, circular cylinder, cube, rectangular box, etc have three planss
of symmetry. By following the same procedure used above it is dear that the only possible non-zero

elements are
My, i=1+6, Mo M o.M o0 Mog M 5. M (14)

and that if potential flow is essumed all of the off-diagonal terms are zero. Only in this simple cese of
three axes of symmetry and symmetry of the m:'. x (see below for conditions on this) does the matrix

become purely diagonal so that there are no secondary induced accelerations.

It remains to discuss the precise flow conditions under which the matrix cen be assumed to be sym-

metric and then finally to indicate how all of the elements could be eveluated.
34 ADDED MASS MATRIX SYMMETRY AND SUPERPOSIBILITY OF FLOW SOLUTIONS

The astute reader will have recognized that the mere definiion of My in Eq.(9) requires certain
assumptions conceming the nature of the flow and the ability to linearly superpose the effects (i.e.
forces) of acceleration in the six directions. The question of the minimum preconditions necessary in
order lo write Equation (9) is one which will not be addressed here. It is however deer that these
preconditions are met as soon as one makes the assumptions necessary to evaluate My. To the authors
knowledge the only evaluations which exist require that the fluid flow is superposable in the following
sense; that the total induced fluid velocity can be obtained by linear addition of the fluid velodties
caused by each of the components of the body motion or velocity. For this to be true requires that




-9-

both the equations used to solve for the fluid flow and the boundary conditions be linear. This is not
true in general of the Navier-Stokes equations for fluid motion and therefore superposability is not, in
general, applicable. However there are two models of fluid flow which do salisfy this condition namely
(i) the potential flow model for high Reynolds flow [Yih, p.100] and (ii) the Stokes flow model for
asymptotically small Reynolds numbers. In both cases the equations of motion can be put in linear
form. Furthermore provided if one is dealing with rigid or undeformable boundaries the boundary con-
ditions are also linear. Only in these two limiting ceses can the added mass matrix be regarded as an
exact representation of the relation between fluid inertial force and body acceleration. In other types of
flow it could however be regarded as a reasonable first approximation. Case (ii) above is of interest in
flows such as occur in slurries or suspensions; however we shall from here on confine our remarks to

case (i) which is of greater practical importance in ocean engineering.

W hen the flow is linearly superposable, it is convenient to define Uy as the induced fluid velocity
caused by unit velodty of the body in the j direction {j=1-8). Induded here are both the trensla-
tion components, j=1,2,3, and rotational compuients, j=4,5,6 of body motion Then if the body

velocities are denoted by U; j=1- 6, it follows thal the fluid velocity
u=wy (15)
Consequently one can write Equation (1) as
T=1 Az Uil (16)
where the matrix Ay is composed of elements
Ap=p [uguadV=H,, (17

It can be shown [Yih, p.102] that the matrix Ap is in fact the added mess matrix Mx. It is certainly

dear that the diagonal terms A, Agp Ay are identical to the added messes evaluated in Section 3. (To

establish this define the direction z of Section 3 as either z, z; or zg then vy, and 1 are identicel

and equal to the velocity % used in Section 3.)
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Furthermore it {8 dear from this evaluation that the added mess matrix rmust be symmetric since
reversing j and k in Equation (16) does not change the value of the integral. Hence superposebility
implies syrmmetry of the added mass matrix.

26 EVALUATION OF THE ADDED MASS HATRIX

The expression (17) will permit the evaluation of the entire added mess mairix Indeed it should be
particularly noted that use of this result only requires the solution of steady flow problems since uy is
the fluid velocity due to unit velocity of motion of the body in the j direction. Consequently the solu-
tion of six steady flows for j=1- 6 allows evaluation of all 2 distint values in the added mass matrix.
Hence one can make use of existing methods for solving steady flows around bodies of quite complex
geometry in order to evaluatg the added mass matrix. References 1.2,3,4 and 9 provide information on

these existing methods.

One other form of Equation (17) can also be valuable in dealing with potential flows. Then if ¢,
represents the velodty potential of the steady flow due to unit motion of the body in the j-direction

then it follows that

Uy= (18)

g

Substitution into Equation (17) and application of Green's theorern leads to
- Opp
Ap==p [p; 5o dS (19)
s

where n is the outward normal to the surface, S which represents the body surface. In many cases of
steady potential flows around compiex bodies it is dearly easier to evaluate the surface integrel in (19)
than the volume integral in (17). Indeed the form (19) is ideally suited for use with potential flow

aodes such as the Douglas-Neumnan code.
36 VELOCITY AND ACCELERATION OF THE FLUID RATHER THAN THE BODY

All of the preceding discussion was centered on the inertial forces due to acceleretion of a body in a

flud This review would be incomplete without some comment on the ceses in which the fhuid fer




-11-

from the body is either (i) moving with a constant, uniform velocity or (ii) accelereting.

Examine case (i) first It was implicitly assumed in all the preceding sections that the fluid far from
the body was at rest. Otherwise dearly the integral defining 7 (Eq.(1)) would have an infinite value
and the subsequent analysis would be meaningless 1f, as in case (i), the fluid far from the body has
some uniform constant velocity denoted by # then it is dear that since the inertial force cannot be
altered by a simple Galilean transformation it follows thek the proper definition of T under these cir-

cumstances is
r=§—{ (w — W)y - W) dV (20)

The value of this integral is then finite and the conundrum resolved. In other words the appropriate 4
to be used in Eq.(1) is the velodity of the fluid relatie fo the fhud welocity for from the body, provided the
latter is constant with time. This leads to no alteration in fluid inertial forces A rigorous expression

for the forces would be
d dU.
F=-Mg < (U - Wy=—My =L (21)

but since the time derivative of W is zero the original relation (9) ‘< recovered.

However case (ii) in which W, is a function of time is more complex. It is important to identify
the fluid inertial forces in this case for two reasons. First it is of practical importance in analyzing, for
example, ocean wave forces on structures. Secondly, many of the important experiments on unsteedy
forces are performed using an excelerating fluid rather than an accelerating body (e.g. Refs.10 and 11).
W e begin by visualizng a case (1) flow with a constant, uniform fluid velodty, #; (j=1-+3), fer
from a body whose center of volume is moving at a velocity, U; (j=1+86). The body is also
accelerating with components, A;. The flow satisfies the Navier-Stokes equations for fluid motion ~
and the solid body boundary conditions. The fluid inertial forces in this case are given by Eq.(21).
Now consider a dightly different flow whose velodities are identical to those of the first flow bt in
which an additional uniform acceleration j=1,2.3 is applied globally to both the fiuid 2nd body. Now

ay
the actual acceleration of the body is (4, + -T#-L). The NavierStokes equations of fluid motion and

R o T LTI S P IO ,4_4_‘,”,_,“‘,;‘1
. .
.
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the solid body boundary conditions are identical for the two flows exoept that where the pressure, n
appears in the equations for the first flow, the expression p-pz,d—z;l- appears in the equations for the
second flow. Consequently the stresses and forces which the fluid exerts on the body are identical
except for an additional contribution in the second flow due to the additional pressure, pz,%’-. W hen
this is integrated over the surface of the body the additional force on the body tums out to be

aw;
pVp —d-L where Vp is the volume of fluid displaced by the body. Consequently the inertial force is

dw
F=—MgA; + pVp -d—‘ (22)

But as stated previously the acceleretion of the body in the second flow is now A; + dW 4k

and hence in the case of the second flow
(A

where dW it is the acceleration of the fluid fa .rom the body. Substitution for 4; in Eq.(22) pro-

duces the final required result for the second flow:

dU dw
F= -My i’- + (My + pVpdy) -&!—. j=1.23 (24)

where 6y is the Kronedker delta (6y=1 for i=j 64=0 for i#j).

Therefore the "added mass” assodiated with the fhad acceleration, dW ;A in the second flow is the
sum of the true added mass, My. and a diagonal matrix with components equal to the mass of the dis-

placed fluid, pVp.

However we must now examine more closely the generel validity of Eq.(24). The first and second
flows described above were aswumed to have identical fluid velodty fleids at the moment at which the
forces were considered This will 7ot be true in general for solutions of the Navier-Stokes equation
even though the body velodities and far fleld fluld velodties are identical. In general the solutions to

the Navier-Stokes equations will also depend on all of the previous time history of the body and far
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field fluid motions and consequently the two flows will ot in general have identical fluid velodty fields.
There are however two important exceptions to this and in both cases Eq.(24) will be true. First if the
viscous effects are neglected then the fluid has no memory and the fluid velocity fields will be identical;
thus Eq(24) holds for potental flows. Secondly if the previous history of the relofie velocity,

(U; — W;) is identicel in the two flows then (24) will hold regardless of viscous effects.

Therefore, in summary, the fluid inertial forces due to any combination of body or fer field fluid
acceleration (dU;/dt or dW;Adt) can be exactly represented by Eq.(24) if either (i) viscous effects
arr "eglected or (i) the matrix M represents the fluid inertial forces for the case in which the fluid is
at rest far from the body and the entire previous history of the relative motion (U; — W, is identicel
to that of the flow under consideration The latter is indeed the case when comparing two ceses, for
example, 1n the first of which the far field fluid motion is sinusoidal in time and the body at rest and in
the second of which the far fleld fluid motion is al rest and the body moves sinusoidally. Consequently
the "added mass’" in the experiments of Keulegan and Carpenter (Ref.10) in which the far field fluid is
accelerated sinusoidally should yield (My + plp) whereas the experiments of Skop, Ramberg and
Ferer (Ref.15) in which the body is accelerated should vield, M,. To transfer results from one case to
the other requires the addition or subtraction of the displaced ma.- For the examples of Section 3.1
the values of (Mg + pVpy would be 2omR? per unit length in the case of the cylinder and 2om R?
in the case of the sphere. Sometimes the total (Mg + pVpy is referred to as the added mass and this
can result in some confusion. Stnclly speaking the term added mass should be reserved for My only.

or in other words the case in which the body is accelerating and not the far field uid
37 THE EFFECT OF A NEARLY SOLID BOUNDARY

The effects on the added mass due to the proximity of a solid boundary will be addressed in more detail
later (see Section 4.4). It is generally true that the presence of the boundary tends to increase the
added mass (see Tables 1 + V) and sometimes this increase can be very large. Here we nmelyranark
that the preceding theoretical results are equally applicable in the presence of a solid boundary with the

following addenda:

1Y
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A. The redudtions due to geometric symmetries discussed in Section 3.3 only apply to total geometric
synmmmnetries of both the body and solid boundary.

B. Potential flows with a plane solid boundary can be modelled by reflecting the flow and body in the
plane and treating the total flow due to the body and its image. Equivalence of the two problems
allows the transference of added mass coefficients from one to the other. As an example of this
see the cases of two cylinders and a cylinder plus a plane boundary in Table II.

38 THE EFFECT OF A NEARLY FREE SURFACE

Unlike the presence of a solid boundary, a free surface boundary adds considerebly to the complexity of
the problem. This is due to the fact that. in generel, the boundary condition is non-lineer and hence
superposability is rot satisfied A's a consequence the dynamic behavior of bodies near a free surface is
a specialized area in which the literature is also rather spedalized because of the complexity of the fluid
flow problems. Though this subject is outside the scope of this report it is necessery to meke a few
brief remarks and. in particular, to identify the conditions under which one must account for free sur-

face effects.

In the case of fioating bodies the reader is referred to excellent reviews of the analytical techniques
by W ehausen {Ref.12), Newman (Ref.13) and Oglvie (Ref.14). Submerged bodies are only slightly
easier to handle. Some data on submerged bodies is given in Table 111. It should be stressed that these
examples are only pertinent to the inertial forces generated when accelerating the bodies frornvest. Any
prior translation or rotational motion of those bodies would have generated free surface waves which
would in tum affect the unsteady loading on the body. This represents the major complication intro-
duced by the presence of a free surface. It is however dear that if the body motion is suffidently siow

(characterized by a velodity, U, say) then the waves created will be negligibly smell and these prior
1
history effects would also be small. This requires that the Froude number, UAgd)?® << 1.

The results of Table 111 do allow one to estimate what constitutes proxirmity to a free surface provid-
ing the above conditions hold It can be seen that the free suface hes little effect (less than 5%) pro-
vided the ratio of the depth of the body to the body dimension is greater than about 4. For lesser

———— g
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depths the added mass first increases as the acceleration of the fluid between the free surface and the
body increases but then decreases when the depth is less than about one body dimension becmse less
fluid is being accelerated.

48 THE EFFECT OF FLUID CONMPRESSIBILITY

Generally the effects of the compressibility of the water on the added mass can be neglected in most
ocean engineering applications. This is because the compresstbility does not begin to affect the fluid
flow until the M ach number ratio of the typical fluid velodty to the velocity of sound, c, in the fluid
exceeds a value of at least 0.1. In unsteady flows one must also consider a parameter computed as the
typical acceleration times the typical body dimension and divided by c. Again one would not normally

expect any compressibility effect if this is less than 0.1.

Such conditions are almost always satisfled in ocean engineering applicetions. However it is possible
that the presence of a large quantity of bubbles in the water could sufficiently reduce the sonic velodity,

¢, to such an extent that the added mass would be altered by the compresibility of the water/gas mix-

ture
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4 REVIEW OF EXISTING DATA ON ADDED HASS
41 THEORETICAL POTENTIAL FLOW ADDED MASSES

By far the largest category of analytical results for added mass are those celculated for bodies in en
infinite Auid domain assurning the flow to be potential. The majority of these results are obtained by
methods analogous to those described in Section 3. Bodies for which the steady flows cen be genersted
by superposition of an array of potential flow singularities (sourves, sinks, doublets, potential vortices,
etc.) are particularly compatible with the use of expression (18). Such methods are described in Ref.9
and in many mechanics texts (e.g. Ref. 1, p.104). A particularly useful tabulation of many of the avail-
able results is given in a paper by Patton (Ref.8) and his Tables 1 and 2 are reproduced here as Tables |
and 1lI. Note that the lird column of these tables contains the added meas demoted by m,; the
values given comresporwi to the diegonal terms in the added mees matrix, My, ths diredtion of
acceleration bearg specified in the second column. (No off-diagonal components of the edded mass
matrix are listy:a.  Some results are also listed for bodies on or near to a solid or free surfece and com-
ment on these is delayed until later. Patton has incduded both theoretical potential flow added masses
and ex;erimertally determined added masses in Tables I and IIl. These are distinguished by the letters
T and E in the fourth colurrn of these tables. Another excellent source of tabulated added masses is
given in a DTM B report by Kennard (Ref.9). Kennard's tables for added mass coefficients are attached

to this report as Tables 11, IV and V.

Though not exhaustive Tables | through IV provide a substantial reference list of added masses. It
oould be argued with some justification that these tables are more than adequate for most engineering
purposes provided the body under analysis is not in close proximity to a solid or free surface. The
remainder of this report will concentrate on the limitations of this analytical knowledge in terms of
boundary effects and reel fluid effects (e.g. viscous effects). However before proceeding to these dis-
cussions two further points should be made.

First Tables ] through IV could be supplemented by the potential flow methods descaribed in Section
3 and detailed in many references (e.g. Ref.8). Modemn potential flow computer programs
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(e.g.Douglas-Neuman code) for stzady flows could reedily be adapted for this purpose as discussed in
Section 3.5. The capability to do this might be important in circurnstances where accurate added
massses are required for bodies of unusual or complex geometry or in drcumstances where the ofl-
diagonal terms in the added mass matrix are deemed important (the tables contain virtually no informe-

tion on off-diagonal terms).

The second point is that approximate values for the conventionsal or diagonal added mass terms for
bodies of complex geometry (for example, an airplane) can be obtained by combining the added masses
for each component of the structure (wings, fusilage, tail, etc). Such a stretegy is outlined in Section

43
4.2 SENSITIVITY TO THE GEORMETRY OF THE BODY

The diagonal terms in the added mass matrix (i.e. the conventionel edded masses) ere relatively
independent of the precise geometry of a body. For example, when accelerated normal to their longitu-
dinal axes, cylinders with any elliptical cross-section have an added mass equal to that of a droular
cylinder with the same width normal to the direction of acceleration under consideretion (see Teble I).
Cylinders with more irregular rectangular or diamond shaped cross-sections deviate somewhat from this
rule; however the deviations are rather unpredictable. Compare for example the fact that the rectangu-
lar and diamond shapes in Table 1 show opposite trends as the cross-section becomnes more streamlined
in the direction of acceleration W hen the ratio of cross-sectional dimension in the direction of
acceleration to thal normal to the direction of acceleration is about 5 the rectangular shape hes
Increased its added mass by a factor of 2 whereas the diamond shape has decreased its added mass by
afactor of 40%. The unsubstentiated opinion of the author is that the experimental values would show

less deviation due to the eflects of flow separation

D espite these devietions, a reasonable first approximation to the trensletional added mess, Mg, for
two dimensional bodies (large aspect ratio of length, { to cross-sectional dimension, 2a, ) would be
the mass of a cylinder of fluid whose diameter is the same as the width, 2a;. of the projected area in
the direction of acceleration, z:
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My~ pri(a)l (26)

Consider therefore the following empiricel approximation for erbitrery three dimensionsl bodies;
that the added mass for a particular direction of acceleration, 2z, is given by the volume obtained by
rotating the projected area of the body in thal direction about an axis defined by the smaller of the two
principal dimensions, 2q;, 2b;, of the projected area. For an elliptical projected area this would yield

My= %pnb‘(ﬂﬁ- 6> o (26)

where there is no implied surmmation over the index i This would yield a reasonably conservative
approximation for the preceding case of the cylinders. However it would substantially overestimale the
added mass for a body like a sphere which has a amall aspect ratio. Then the above estimate would be
twice the potential flow value. Perhaps a better empirical approximation would be

pr(af (b

(& + a) &

=%
My= 3

which would then predict both the cylinders and u.e sphere correctly. Testing this ageinst the data for a
prolate ellipsoid accelerating broadside on” (see Table IV) we find a value of the added using
Eq.(27) which is within 7% of the exact value. Further improve.~~uts could dearly be made but are

probably of minor value considering the other uncertainties discussed below.
4.3 BODIES OF COMPLEX GEOMETRY

The result (27) of the previous section suggests an extension for the purposes of evaluating the added
mass for a body of complex geometry (an airplane). Though it would require further detailed enslysis
and testing it would not be unreasonable to suggest that a complex body be considered disassernbled
into its principal component parts (wings, fuselage, tail) and that the added messes for each component
be evaluated for three perpendicular directions of acceleration using the technique outlined in the previ-
ous section Then we st ask whether it is approximately cormrect to simply add the added masses for
the corponents in each of the three directions. From an engineering point of view it seerns reasonsble

to do this. However it is very difficult to give any quantitative measure of the error in such an estimate
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e e

due to the interaction of the components. The cese of two parellel cylinders touching each other which

is detailed in Table I, provides a particuler harsh test. For directions parallel to and normal to the

plane of the axes of the cylinders the ervors would be 35.5% eand 120% respectively. But this simply

,‘ demonstretes that the two cylinders together should be treated as a single component; then the errors
are significently smaller namely 297% and 14% respectively.

M uch more reasonsble tests are provided by the winged objects in Table 111 and we shall, in particu-
lar examine the values given in Item 3, Table IIl. Taking the individual components (two flat plates
and an ellipsoid) and using the tabulated added masses of these individual components in the case
N=0.5 one amvesat avalue of X of 1.283 Thisis within 5% of the actual valus calculated namely
1.24.

Further tests would be needed to establish confidence limits on this superposition method but it

does not seem unlikely that one could confidently predict potential flow added messes for complex
bodies to within + 30% using the methods outlined above and empiricel formulae such as represented

by Eq.(27).

4.4 THE EFFECTS OF A NEARLY SOLID BOUNDARY

The discussion in Sections 4.2 and 4.3 was confined to bodies remote from a solid boundary. It is deer
from the various exarmples given in the tables that the presence of a solid boundary cen ceuse substan®
tial increase in the added mass. This is due to the necessary increase in the fluid accelerstions primerily
in the region between the Muid and the boundary. For example from Tabie 11 it is seen that the adided
mass for a droular cylinder (radius, @) is increased by a factor a?/2h? for a wall & a distance h

from the center of the cylinder. Themsultpmsentediso:ﬁyammdmateammqmr.a ah <z 1 It
' the body is brought doser to the boundary the added mass incresses a an even grester rete because
one develops a "film’’ or narrow gap between the body and the wall in which the fluid accelerstion cen

be very large indeed

From a precticel engineering point of view there is a paucity of data for these extreme conditions of
dose proximity of a body to a solid boundary. A simple example will illustrate some of the dremstic
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suda? Consider the two dimensional problem of a flat plate of width, 2z lying on an ocean fioor.
A vertically upward force, £, per unit length of the plate is applied at the center of the plate to lift it
g’aytmmmeﬁoor. Due to this force the plate has risen to a uniform height, h(¢), above the fioor

at ime ¢ The velocity and acceleration of the plate in the upward direction are therefore dh/ and

d®h Ait? (see Fig. 2).
Figure 2.
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This problemn could be visuslized as characteristic of any fairly flat object lying on the oceen ficor.
Typically only portions of the undersurface would be in contact with the ocean floor. However one
could visualize that prior to application of the force there is a typical average separetion distance, hg,
between the undersurface and the object. Silting up of the object could, of course, make hAg very
amall. In any case some Ay would be pertinent to the moment, £=0, when the lift force is applied.
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W e concentrate here on the dynamics of the body while the separetion, A i8 very small compered
with the lateral dimension, 2a, of the object because it will be seen that these are the most critical
conditions Then upward velodty of the piate, dhlf, will generete much larger horizontal velocities,

u, (Fig.2), in the gap than vertical velodities and hence continuity of mess in the gap requires

-
h u= & x (28)
and the momentum equation for the fluid in the gap in the absence of frictional or viscous forces yields

10p 0u, 10 ppy-
P 6z+2u0::+h ot (has) =0 (29)

where p(xzt) pressure at any point, z in the gap. Substitution and integration yield the following

form for the pressure distribution in the gap
cpp+ L(at-2)n T |1 30
PePE® gt TEIR B |n (%)

where pg is the pressure at the edges, z=+ a W hile the gap is small pg will be approximately equal
to the ambient pressure, p;, and the pressure on the top-side will deviate rmuch less from p, than the
pressure p in the gap. Consequently by integration using the relation for p one can obtain the
downward inertial force or added mass force, £, imposed by the fluid on the plate (per unit plate
length)

_2 a’jé*h 2 |6n
F=zr T{atz h | ot “’] ' (31)
Compare this with the known inertial force on the plate in the absence of the solid boundary namely

pria® 8°h/8t2 where 9%h Bt is again used to represent the vertically upward acceleration. It is dear

that the magnitude of the former given by Fq.(31) will typically be very much larger than the latter by
. the large factor, a/h Of course the preceding analysis ceases to be valid when h approaches a But
it is dear that as the plate is raised the added mass per unit length begins at a very large value of the
order of pa’s, and will rapidly decrease with h so that it esymptotically approaches a value of the

order of pa® when h is of the order a
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1t is of interest to examine briefly the consequences of this behavior of the fluid inertial forces. i,
for simplicity one neglects the mass of the plate itself, then the upward force applied to the plate by the
ceble will be equal and opposite to the fluid inertial force. For illustrative purpose suppose a constant
upward cable force is applied. Then integration of the equation of motion represented by Eq.(31) it F
is now visualized as the cable force yields a time history h(t), given by

1
ho o TE

SV P

(32)

where the initial conditions A=hy and dh/AE=0 at t=0 have been used. It is readily seen that this

leads to a kind of ‘‘catastrophic’ release from the bottom in which the upward acceleration increeses !
with time. It is unlikely therefore that a constant uplift force could be maintained under these dr- j
cumnstances. Consequently the actual initial motion would be dependent on other factors such as the ]

cable elasticity. i

The author has, as yet, encountered little in the way of analysis of such problems and suggests this
as an area deserving further study both experimentally and analytically.
4.5 VISCOUS EFFECTS ON ADDED MASS AND DRAG
The previous sections of this chapter have deliberately avoided reference to a further complication
caused by the viscous effects in the flow around the body. These viscous effects on both the fluid iner

tial and fluid drag forces have been the subject of a number of detailed studies as represented for exarm

ple by Refs.10, 11 and 15. The essence of the complication is th'¢ .~ certaii. ;*Znes of flow the

viscous processes of flow seperation and vortex shedding cause radical modifications to the forces
expected on the basis of simple addition of fluid inertial and fluid drag forces. The latter approximation i
is embodied in what is known as M orison’s equation (Ret.18) in which the total force on the body, F,

is expressed as

FT——M‘, ks B 1—pAq,{[u,]} (39)

where Cy is alift and dreg coefficient matrix, and A is a typical area for the body. This equation is
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normally quoted for only one direction at a time and is written es

Fr=—u & - L pacylup? (39)

where Cp., U and dU/ refer to a dreg coefficient, the velodty and acceleretion in line with the
force. It might be expected that both M and Cp would be independent of the specific motion under
consideration. However Keulegan and Carpenter (Ref.10) have observed experimentally thet this was
not the case and that substantial chenges in M and Cp occurred as the rate of acceleration
represented by the period, 7. of their sinusoidal motion was increased such that Uy 7/0 became of
order one. Here Uy is the typical velocity (the peak velocity of the sinusoidal motion) and D is the
cylinder or plate width. It is significant that all of their data was obtained within a range of Reynolds
numbers, UygDw (v is the kinematic viscosity) between 5000 and 30,000. Even the steady flows pest
bodies in this Reynolds number regime experience substantial unsteadiness due to flow separetion and
vortex shedding.

Keulegan and Carpenter found thet the "effectiv2" value of the added mass for cylinders was dose to
the potential flow value (pmD?%/4 per unit length) for Uy T/D below about 5 but decreased repidly
with increasing Uy T/D becomning negative for a renge of Uy 7/D between 10 and 20! (Note that
we have subtracted the displaced fluid mass from their results to get the true added mess in line with
the discussion of Section 3.8) W ith further increase in Uy T/D positive values similar to those for
UyT/D<5 are recovered. The drag coefficient, Cp. shows a large increase for the same renge of
Uy T/D betweeen 10 and 20. Flat plates exhibited a different pathologicel behavior of the added mass

and drag coefficent. No systematic variations with Reynolds number, Uy DA, could be detected

Skop. Ramberg and Ferer (Ref.15) have also carried out experiments on sinusoidally osdllating
flows except that the body rather than the fluid is accelerated. Their resuits do not agree with those of
Keulegan and Carpenter. For values of Uy T/D between 1 and 12 they found that the fluid inertial
force agreed very well with the potential flow value. Moreover the variations in the effective dreg
coeflicient could be accurately predicted by considering the instantaneous Reynolds number at each

point during the cycle, using some eppropriste form for the corresponding instantaneous dreg and




thereby synthesizing the overell dreg coefficient.

The results of Skop, Ramberg and Ferer carmot be readily reconciled with those of Keulegan and
Carpenter. The Reynolds numbers for the Skop, Ramberg and Ferer experiments are in the renge
between 230 and 40,000 and are therefore similar to those of Keulegan and Carpenter. It is quite dear
that further detailed measurements using more sophisticated measurement and data analysis techniques
are needed to resolve this question Though it has little value, I have formed the very tentative opin-
ion that the experiments and data reduction techniques used by Sktop, Ramberg and Ferer are superior
to those of Keulegan and Carpenter and therefore 1 would place more confidence in their results. On
the other hand the data of Keulegan and Carpenter is rmuch more widely known and used; this | believe

may be unfortunate.

For the present it is necessary for engineering purposes to be eware that pathological behavior of the
fluid inertial forces might ocaur for body motions whose typicel amplitude is greater than sbout half of
the body dimension

Before leaving this subject it is of value to Secord afew of the results of the experiments carried out
by Sarpkaya (Ref.11). He osdllated a cylinder in a direction normal to the direction of an oncoming
stream of fluid end observed pathological behavior for VT/D ( where V is now the steady stream
velocity) between about 3 and 10. Furthermore, in one of the few experimental meesurements of ofl-
diagonal terms in the force matrix he observed the osdillations in the force on the body perpendicular

to the direction of osdllatory motion to be less than 7% of the steady drag in that direction.




5 SUNNARY

The analytical background of the added mass matrix describing fluid forces due to acceleretion of the
body or the fluid has been reviewed. It is shown that the use of this concept is rigorously justified only
in the case of linearly superposable fluid motions with rigid boundaries In the context of ocean
engineering problems this restricts the analysis to that of potential flow and. indeed, almost all of the
theoretical predictions are computed from potential flow analysis. For empirical engineering purposes
the concept has also been used for real flows with boundary layers, separetion and vortex shedding.

The majority of potential flow celaulations of aedded mess are for bodies accelerated in an infinite
domain of incompressible, inviscid fluid M any of these are induded in Tables I to IV. These tables
provide a substantial reference list which may be more than adequate for many enginseeting purposes
provided the body is not in close proximity to a solid or free surface boundery. Furthermore since the

1 added mass is generally rather insensitive to the detsiled geometry of the body we have some prelim-
inary suggestions as to how the added mass for a body of complex geometry might be estimated As
detailed in Sections 4.2 and 4.3 the first step is o decornpose the body into rnajor components. The
added mass of each may then be estimated for each direction of acceleration from the principal dimen-
sions (2g;, 2h, of the projected area in that direction and the appruximate formula (27). The added
mass for each component in each direction would then be arithmetivally summed. 1 believe it might be
possible to make predictions within + 30% by this means. If better accuracy is required then we have
indicated how modem potential flow codes (.e.g DouglasNeuman code) designed to calculate steady

flows might be utilized to obtain better results.

3 D ata is scarcer for the cases when a solid boundary or free surface is dose to the body. In genersl

modifications are required if such a boundary is within four major body dimensions Free surface
' effects are quite complex and are not covered by this report. However it is shown that a solid surface

(ocean bed) can have a dramatic effect particularly when a body is being reised from the oceen floor.

D ata Is also soarce for the off-diagonal elements of the added mass metrix. Virtually no results for
these elements eppesr in the tables Consequently it is almost impossible to whether theee

I Y
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interaction terms are importent in precticel problems. A gein, however, use of the aforementioned com-
puter codes would permit better evaluation of the need to consider the off-diegonal terms

The relationship between the forces when the fluid is accelerating past the body as opposed to the
reverse is discussed in Section 3.8. 1t is shown that a relation can only be firmly established if either (i)
superposability is possible (e.g. potentiel flow) or (ii) if the entire previous history of the relative velo-
dty is identical in the two ceses. Then the appropriate fluid mass in the case of fluid acoeleration is
equal to the added mass plus the displaced fluid mass

Finally it is clear that viscous effects in the form of boundary layer seperetion and particulerdly vortex
shedding could possibly ceuse radical departures from the theoretical, potential flow predictions. The
data on this is limited and contradictory. For the present one can only point out that pathological
behavior might occur in certain ranges of frequency (or typicel time of acceleration) and Reynolds
number.
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6 RECONMENDATIONS

It seems appropriate to suggest several arees of engineering importance in which further enatyticel,
empirical and expenimental studies would provide valuable information

A. There is a relative paucity of good experimental data in the open literahure which cen be used to
evauate the real fluid effects of viscosity. The data which does exist is often contradictory. Such
experiments are not easy and are frought with pitfalls. However both meesurement techniques and
data processing methods have substantially improved in the last five years It therefore seems
appropriate to suggest further experimental programs which might help to provide some solid infor-
mation that the engineer could use. At the present time there is little concrete knowledge which
the engineer could use with confidence.

B. The theoretical predictions of added mass from potential fiow provide a good data base for use in
estimating the diagonal terms in the added mass matrix. This data base would be utilized to pro-

duce empirical methods for use with bodies of complex geometry. This could result in a simple

and useful computer code for this purpose.

C. There are however very few calculated values for the off-diagonal terms in added mass matrices. 1
therefore recornmend that in order to build up some data base for off-diagonal terms and in order
to allow more accurate evaluation of the diagonal terms for bodies of complex geometry some of
the modem potential flow computer codes (e.g. Douglas-Neuman) be adapted to evaluate the

entire added mass malrix.

D. The drematic effects which can ocour during separation of a body from the ocean floor should be
further investigated both analytically and experimentally.
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TABLE 1

(From Reference 5)

ADDED (HYDRODYNAMIC) MASSES FOR TWO-DIMENSIONAL
POTENTIAL FLOWS ; Reference numbers are given

under SOURCE.
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f P Vertiend ( 6 8
Y, 1 t mh - 1*pa 3
P il ' ‘r‘E
i Vertcal ‘ 6
a'bh -~ ; : o, 12pa’ T
N . arb =10 _mh =~ Ll aat 6 T
AT T AT
' g e e e e f e e - —_
;‘427éﬁ PR Vo -2 m, e 136 mpa -5 T
S A -— ~— -
f//.ﬁfa__'__ b m, - Lelapa’ 6 T
e (RECIE S By N 1707 pat 6 T
vl "; "o L0~y 2l 6 T
arh =3, m, - 2.23 = pa? é‘ T
\/‘)\ Vereal 6
\, -
S A N A T
‘{' V/;,{ ’a ¢ S [ 1-2"01: 6
t V2 . ae 1 g -~ 1. R

AR ! T
; - DY Sl Sl T
i'-i'-—"i’ 6 n=.29, m, = LlCrpa 6

-
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I (continued)

MTRALATIOHAL

WYORCCY il 1L ASS

| - YI AA e s Ay yres
| STCTIOR THRCUTH LE SIRECTICH FER UNIT LINGTH s3dne
{ Vereical [
R - - = nal
//f\' = /b -2 ) m, 85=pa 6 T
? /// ‘ B m, = T6mpal 6 4
| ——
—_— alb=1/2 m = .67 7pa’ 6
]

ab = 1/8

—-——ip

L ———

m, = 211 =pat

; — Vertical |
! +
N (4 (normal to free
! "‘..——i S = <urface)
. /,////x I .
: i e x h et m, v TSTpal 6
i iR T
; ——r Horizental
| o ? R4 (paratiel to free
i /)/./ y K'J surface)
i % 4_‘::"'! a’b -1 noo- 2%57pa” 6
:0—-2: -t
- ! ! T
i Vertical
| (normai %o free .
SR ab=1; surface) m, = TSmpa” 6
A ’//‘ < S /b~ ~ T
N T Y Ty e e - —_—
T R
Vom2gme | T U SO U PRI AR
, b 1.8 - 8)rpa 6 T
H e'b =15 m, = 1LOvmpal & v
) [ 2|
{ «'b -5 w, =~ L% pa 6 <
- A - v ———— e ———
\\“((\Q\(RK\((\ )
e/b=-.25 m, o~ 200 7pa 6
T
Vertical

™
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TABLE 11
(From Reference 9)

ADDED MASSES FOR TWO-DIMENSIONAL POTENTIAL FLOWS
(See Reference 9 or TABLE V for notation)

Circular cylinder in translution perpendicular to its axis:

1
. T, =5 P a?y?, as in Equation [68i],
@ 2

Ml'-prra, k=1,

Elliptic cylinder in translation parallel to an axis, called the a-axis, either a> 5 as shown

or b>a:
)

1
Ty =5 pm b2u?,

*Q

from Equation [84l1],

M{ = pn ab, k=Db/a.

Plane lamina in translation pernendicular to its faces:

1 .
T ., T, =5 P a?U*, as in Equation {86b),
3 n - '

kM| = pn a?

Elliptic cylinder rotating about its axis:

1
T - T pr(a2-5%)2 w2, as in Equation [106z],

(02_62) 2

2ab (a2+8?)

Axis of

1
' A =P ab(a?+b%), k=
Rotation

Plane lamina rotating about its central axis:

Axis 91
I /‘“‘/""”‘ T, = TR a w2, as in Equation [106a°),
S w
1
l kl’=— pn a*.
1 8 pm

C R Ry GG A

Y
-~
o . N EE————_ N
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TABLE II (continued)

Plane lamina rotating about one edge: -

9
1——— Axis of T, “T6°" a*w?, asin Equation [106b’]
Rotation .
with B = 1
s / B L]
/
/ = =
Moment of inertia of fluid displaced bya 3pmatse 4

© cylinder of radius a rotating as if rigid
abaut a generator

Apparent increase in moment of inertia 9pma®/8 3

Fluid inside elliptic-cylindrical shell rotating about its axis:

Axis of 2 2y2
_ 1 a‘-b :
R;“"N' T == prad (a -0y w?, as in Equation [105m),
a2+ b2
1 2_p2\2
| If =—pr ab (a2 + b7, P )
8 a2+ d?

Fluid inside semicircular cylindrical shel! .otating about axis of the semicircle

8§ 1
T, .i'_(—z- _-2-) pa*w?, as in Equation [102e),

Axis of
n

Rotation

‘ n 8 1
7, 1 =— 4 k=2 —~-—|u0.621.
1 pa’, < ) 0.621

Fluid inside equilateral triangular prism rotating about its central axis:

Axis of T 1 4 2 in Equation [103k]
i s ——=p 8§ S a
Ro/m'on 1 S0V P W, as 1n Lgualion ,
8 3
1 2
1, = 4 k=—.
1 BYV3 P, 5

r Lamina bent in form of circular arc, in translation at angle 0 with chord:

1 d?)
T, =5 P b’sin20+-;/(/2, as in Equation [78r].
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TABLE 11 (continued)

Cylinder with contour consisting of two similar circular arcs; see Section 89.

0=180f

degrees c2
A- Cross-sectional area S= [2(1-{) n+sin 2 0] {
0=180f ‘n29
2c s’n

degrees

1 | c?

1. Translation parallel to chord AB. 7, -5 pk SU2, ko — (—- -1> 5 -1,
. . 1 2 nf 1 c?

2. Translation perpendicular to chord AB: T, =;pk SU“, k= —[[— +1)— -1,

Cylinder with contour formed by two similar parabolic arcs meeting perpendicularly; see
Section 91(d):

1 1
o = 22 - f 2.
M, 3ph, T, Qkqu’
4
1. Translation parallel to chord AB: k= -1 =0.525.
3
”
4
2, Translation perpendicular to chord AB: k= - 1=2.049.
m

Here K = 1.8541, the complete elliptic integral of modulus Vise.

Cylinder whose contour is formed by four equal semicircles:

1
M = -4- (2+7) p A2 for translation in any direction

K% -1 =1.100.

1
Ty=— kM, U3, ke
2 247

For K, see the preceding case. See Section 91(e).

Double circular cylinder, each cylinder of radius a; see Section 90;

A"B Mi=2pna.
2

2
1. Translation parallel to line of axes AB: T, =pn azl/z(L6 - 1) , k-%-1-0.645.

2 2
2. Translation perpendicular to line of aves AB: T, =pn a?y? (1?:- —1) . k-%-l = 92.290.
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TABLE II (continued)

Cylinder of radius @ sliding along fixed plane wall; see Section 90.

1 2
Fluid v T, o— 2U’(———l).
—— 1 2 F’” e a
wall 2
M 2 k- 2.290 -
1 = pr a y - 3 - 1 = L .
Cylinder of rhombic cross-section, in translation along a diagonal; see Section 91(c). -

’ 2 .
M =ps®sinb
8 3
9-—- 00> Lo

1 26 r(3/2
st T,=—kMU% k= (/%)
2

sin@ 6\ /1 6
r-—|r{-+—
2, 2 2n

Here 6 is in radians and I'" stands for the gamma function.

- 10

Rectangular cylinder in translation parallel to a side; see Section 91(b) for references.

A—
ey M/’= kM, = apparent increase in mass,

a
A
L

AN

poo— L) e

yyyi

M o= pnw?/4 or M for a plane lamina of width w.

h/w=0 0,025 0.111 0.298 0.676 1.478 3.555 9.007 40.03
My/Mgy=1 105 1.16 1.29 1.42 1.65 2.00 2.50 3.50

Circular cylinder with symmetrical fins:

N 1
T, = kM, Uv? as in Equation [91g),

< v,

1 A D\?
| I Ml's——an, kel4|—-—1].
4 D A

Cylinder of radius a in translation and instantaneously coaxial with enclosing fixed cylinder
of radius b:

Fixed

1 524 a2
T, == pra?l? M , as in Equation [104f)
2 p2-g2

b2 4 g2 i
M= pn a?, k= . ‘
b2- 42
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TABLE I1 (continued)

Cylinder of radius a in translation in any direction across axis of enclosing fixed square
cylinder of side s, a/s small; see Section 91(1). i

a2
s 1
T =_p”02uz 1"’6.88——2- XYY y ;
U ! 2 8 1
* ®/ ’ 22 5
Flvid M/ = pn a?, k=1+6.88 —
8

Cylinder of radius a in translation in any direction near a fixed infinite wall, a/A small:

1 a?
Ur T,=— pna?l? (1+- ) , as in Equation {95g]
& i 2
Flug 7 ,
vall M = pn a?, k=1+-a—-+ ceae

22
(Only the force required to accelerate the cylinder is considered here.)

Cylinder of radius a moving symmetrically between fixed infinite walls 4 apart, a/A rather

small:
Wali 1 9 a 2
Flud T, =-é-p71 a2y? [1+—3—(—”Z—) +aees ] ,  as in Equation (46q]
= ,@L
\ IQ
F < 2 2 g242
(44 My = pr a®, k-1+—§ = conee

Plane lamina of width b moving symmetrically between fixed infinite rigid walls A apart,
b,k rather small:

wall
1 2 nb? n24? . .
TMe—pU? — |1+ «ees | »  as in Equation [651]
Trhe - R 4 2142
< o Flvid
Wall

e R e T 7
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TABLE 111

(From Reference 5)

ADDED MASSES FOR THREE-DIMENSIONAL POTENTIAL FLOWS
Reference numbers are given under SOURCE.

|

TRAASLANOSAL

n
-

incCTIoN

BYDROOYRALIT MASE

ILOFLAT PLATESY
.

wrrevine Lice

HYRODYMNAMIC MASS

Y
<]

\erteal

Oscilation ea
Hydindyaa
a Cireelar Dise

i

0
"o

Eficet of Frogueney of

¢ Mass of

|
|
|

7

angular {recuency
velocity of sound
in mediwn

L —_ H 4 ) ) .
- 0 t 1 T T 7 T
T s et 5 107 5 10%
[ owim NON-DIMENSIONAL FREQUENCY ~ w%—
Silipticei Gise Ax Shown
v o T
. m,_ ~ Kba -7 L{—
|
A R La X
z C—_—\ g‘ - lco
/ S A 143 .99
e 5 » 1278 087
16,43 98s
0,57 83
8.19 U7
7.00 972
6.0  .964
5.02  .952
4.0 933
3.00 .40
2.60 .82
.50 .748
1.0c .63 T
. reetengulor Pletes Vertical .
mh w K P -%- b 8
J.
§ / . b/a X
L - _/L° 1.0 .73
; 1 630
A—s——/ i 249
2.5 983
.0 o0
3.9 1090
- 0 1.00
~ 1.09 E
L YRRV LR v i e
W \
asessunsniat e, e
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TABLE 1I1 (continued)

+
NILATIOANALY Loncoavior e o -
TOSY SiAPL !TP..'.;"LATT“J‘ Sl BYDRCOYHANIC MASS 2URTE
S.RECTION
Tricrcviar Pigtes Vertical

m . _p_‘!f‘ (TAN 4) - 8
"3 (=)

i
%
!
!
!
|
|

!2. COCIES GF REVOLUTION Vertieal
1
Spheres
U |
: y | = Ty 1,3
) } 2¢
! f
Y.
1 | -+
t
I Ellipzsids Vertieal
; m, - K--f-.'.'p;x'o_' Q,
3
Loteral T K for K for
1 | Axial a’h Axial Lateral
. 2 b - Motion Metion
: v ! 1.00 <00 56N
i — 150 .05 421
7 29 —= 2.00 .200 e
, i 2.51 156 .763
¥ i 2.09 L1122 .803
.09 - .82 Rl
i 4.99 .0%¢ 808
6.01 .04s 918
6.97 036 9233
8.01 .029 48
! LU 024 %4
! 2.97 021 050
(] 1.020
1 ' -r

L.
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TABLE IIT (continued)
T T VRARSLATION LN
: oDV . . HYDRODYR AMIC MASS SCURCE
’ : Tl LoLinrenicH QRODYRAMIC MAY SCURCE
‘ — —— . R
i . Amrexince Moot ile Silngated Godies of Revslition, ;
| i
| ¢ \Q R' L" H
X ; -7Z }
i ; \
| V ; iy ZTL‘ |
! , / , ?
X v - /.__:_ i
‘ T i
i {
| H
5 . r
X :
| 2\* 2 1\* 1 2
L oKLy - et mele- 2 w2 w- Y L amf( o LY . - —
P \"7 2 °7 72 2
!
4 I where! i, = Hydrodvnamic Mass coellicient {or axial motion
. R, = lydrecdvnam:e Masys cocfficient for azial motien ;
i of an eihipyoid of the same ratio of a/b i
; \ . Volume of body j:
]
C_. -  DPusmatic cocificient = -741—-
i b* (2a)
M| - adinensional abscissy —= corresponding
o manirgn ondinate 1
! r.t, = Dimensionless radii of curvature at nose and taif
3 ;
' Ro (22 R1L[23)
3 ! o T T AT 5 o T
F ) b b
!
b
¥
, E
i F
| Lareral
s 1 ) Motion Munl has shown that
i the hydrodynamic mass
{ of an clongated body '+
: of revolution can he
. i reascnably anproximated
! Ly the pruduct of the
: : density of the Nuid, the
rF J i wiume of ihe boly and
! | the ¢ « facior foe an
! eltipsoid of the vame
; z o/bratie.
: )
| .
: It
i\
i \
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I11 (continued)

BODY SHAPE

TRASLATICRAL]

Y .
!)E.’\'[C_".'L.‘. HYDLCDY.IANC A A0S J

enynee
CURCE

Rectanqguler Flat Plates

{ |
I Sebere idegea Fros Surfece Vet v, K-:\— YU 1 E
| s/2a .S g !
i 0 <2 '
! s 88 !
1.6 128 1
15 115
2.0 1.18
2.5 118
3.0 116
35 .12
f 4.0 1.n4
i 45 1.00 E
Vertical 4
thK-?npabz
R a/b = 2.00 8
o s/ X
1 1.09 013
2.00 .00%
f /
3. BODIES OF ANGITRARY SHAPE ,
Ellipzoid with Attached Vertical m, ~ K. -—f— mpaht

a/b - 200, e=b

c.d = Nrad

N X

0 T024

20 .B150
) 3o 1.0240
- 4 11500

.50 1,237 =
! ool e
| . oy , . 4 )
. Elllpsoid w!'th Attccred Vertical m, - K. < Te ab

Sectenculer Flot Flates
Nece ¢ Free Surfvee

|

A

|

! -

! T N . 1t A
!

a/b = 2.00; c=b

¢.¢ ~ N mabh

s - {
S e N X
i L/‘/"_ L 0 oI
tg 4/4 - s
AN . % ) 1635¢
I '/ \.——’:._..:.L*i. 10 1200
ST 10- - /34‘ ,
s c 7 i {0 TV
i : 0 1577 E
- \ .
cnsatiit., - N -
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TABLE III (continued)

TRAASLATIORAL ; . "
. SOLY SHATE N . Q AIC KASSH SURCE
i SOLY S DRECT'O: ‘l HYDROLDYXKANIC KASS SSUR
P Smeemiing. Z.dy | Vertical

-

: 4 K

. - 3 : m, - l.lZlip[-—,.-ﬂad'

f, 4 T l;b ) ? J e
—

i
| ' L Je £t
H »! v
= e
i L " C4
i i 2
. 9
! o——20
: /V 3,
|
i
!
L = ex < .21
i 3
}
!
Ares of Horzoatal Tail™ = 29% of Area of Body Maximua ilorizontal Section. €
i Ercemlined body Vertical
i

- 4
m, o= .642p[—3— nad’]

{
M ' i
\/jﬂzb T |
! 2z
o
{

20 *%
i =0
<
!
| Arca of Horisonral “*Tail™ - 20% of Area of Body Maximum Horizontal Section. E
E “Terpede" Type Bady Vertical

) m, o~ .828npb2(2a)

[l
W

Area of Horizontal 'Tail" = 10% of Atea of Bady Maximum Horiroatal Section. E

1 ]

t . DA et O PRSP e ol s~ - e e aem e s
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TABLE III (continued)

CODY SHAFE

TRARSLATICHAL
CIRCCTION

HYDROCYRALIC 1 ASS

V.Fin T;0e Cody

-t

Vertieal

m, - 3975 pl?

A
L L
e Lo
b 0 = 2.0 E
Perallelepipeds Vertical
T m,o- K pa’b
)
! 8
Y ! b/ a N
b i 2.32
| b4 .86
!
- » @
- (
A 3 3
amn
J— 0o — (_’ ;'\
10 .19
- W,
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TABLE 1V

(From Reference 9)

ADDED MASSES FOR THREE-DIMENSIONAL POTENTIAL FLOWS

(See Reference 9 or TABLE V for notation)

Sphere in translatory motion

T-§p6302, as in Equation (127f],

@ ]
4 1
M -3 a3, Ic-2—.

Sphere moving perpendicularly to infinite rigid plane boundary, a/4 small:

3
T 3 3 a 2 . .
A Fluid Te—pa Leo e U®, as in Equation [130a]
LD A
A witha =0,
4 . 1 3 ad
M= —np a3, k=— (14— -a—+.... .
3 2 8 A3

Only the force required to accelerate the sphere is considered here; see Section 130.

Sphere moving parallel to infinite rigid plane boundary, ¢/A small:

T-xlpa3 1+ — j‘j +.e.. | U2, as in Equation [180a]
lu 3 16 43 ’
with o = 90 deg,

—d
g L4, 1 3 o
” =-—gp G°, ko— 1+ — — deees | o
3 2 |\ 16 53

Sphere moving past center of fixed spherical shell:

faed mo oy 342 ) )
v?, as in Equation [129e],

Tw—pa
3 P 53-g3
4 1 534243
M'-—npas, k-'- —+a—‘
8 2 p3_g3
- * .Q‘ N -
sasigehilagitatng. PRSI . M W N
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TABLE IV (continued)

Prolate spheroid (or ovary ellipsoid), a>b; see Section 137:

Let e = eccentricity of sections through axis of symmetry,

o 1-¢2 l14-e ?
om s \"1e T %)
«

8 1-e2 e 1 1 l+e
- -~ 1in .
07 3 (1.2 2 1-e b |
(1) Translation ‘“‘end on'’: A
2 %o
|y T=—pnab?? ,
3 2-a,
- U
N 4 ap
i M=— pn ab?, k=k = .
3 2-a,

(2) Translation **broadside on’:

Bo
2-B,

2
T=':'3-pn' ab? U?

4 Bo
M=— pm ab?, k=k, = .
3 2-8,

(3) Rotation about an axis perpendicular to axis of symmetry:

Axis of
Rotation

®U

1 4
T=—2—klm2, I=—1-gprrab2(a2+bz),

; (62-5%)" (By-a)
k=k's= .
(624 32) [2(a®-B2) - (a2+8%) (By— )]

See Table A
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TABLE 1V (continued)

TABLE A

Coefficients of Inertia for Prolate Sphéroid

k, k, &k
a/b Transfation Transiation Rotation about
‘‘end on"’ *“broadside on"’ Minor Axis
1.00 0.500 0.500 0
1.50 0.305 0.621 0.094
2.00 0.209 0.702 - 0.240
2.51 0.156 0.763 0.367
2.99 0.122 0.803 0.465
3.99 0.082 0.860 0.608
4.99 0.059 0.895 0.701
6.01 0.045 0.918 0.764
6.97 0.036 0.933 0.805
3.01 0.029 0.945 0.840
9.02 0.024 0.954 0.865
9.97 0.021 0.960 0.883
0 0 1.000 1.000

Oblate spheroid (or planetary ellipsoid), a < 3, see Section 138, where 3 = ¢:

Let e = eccentricity of sections through axis of symmetry,

2 Vioa?
ag~—rye- 1-e? sin~le),

el

Bo'%[ Vi-e2 sin~le -e(l-e?)
e

(1) Translation ‘‘broadside on'’ or parallel to axis:

ag

T-Epn ab?y? ,
l 3 2-00
— AN
4 Go
N V-2 pmab?, kek, = .

+
2-00
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TABLE IV (continued)
(2) Translation “edgé' on”’ or perpendicular to axis:
1 B
’ T= -2— mab? Y2 9
P ’
7 S,
- -
v,
X/ Fo

4
= — 2 - - .
1 M 3pﬂab, . k k2 2_50

(3) Rotation about axis perpendicular to axis of symmetry:

1 4
P T=-§ klo?, I= i ab? (a?+0?),

(62-0%)" (ag-B,)

k=k’'=

(8% +8%) (2 (b%-a?) - (a2 +b2) (ag-By)] '

See Table =

TABLE B

Coefficients of Inertia for Oblate Spheroid

k, k, k’
b/a Translation Translation Rotation about
*‘edge on"’ “*broadside on”’ Equatorial Axis
1.00 0.500 0.500 0
1.50 0.384 0.803 0.115
2.00 0.310 1.118 0.337
2.50 0.260 1.428 0.587
3.00 0.223 1.742 0.840
4.00 0.174 2.379 1.330
5.00 0.140 3.000 1.978
6.00 0.121 3.642 2.259
7.00 0.105 4.219 2.697
8.00 0092 4915 3.150
'9.00 0.084 5.549 3.697
10.00 0.075 6.183 4.019
os 0.000 00 o
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TABLE IV (continued)

Circular disk in translation perpendicular to its faces:

4
Ta 3P adv?, as in Equation (1380 °);

(apparent increase in mass)

2
(spherical mass of fluid of radius a) N

Circular disk rotating about a diameter; see Section 138:

(apparent increase in moment of inertia)

2
(moment of inertia of sphere of fluid of I

Axis of . 5
radius a or 8 pr a>/15)

Rotation

Elliptic disk of ellipticity e in translation perpendicular to its faces, ¢ > b; References

(240) and (235):

2 1
ra—s—gpﬁow, e=— Va?_pZ%;

a
— (apparent increase in mass) B 1
4 - E
’ (§ pn a%b = ellipsoidal mass of fluid with

axes @, a, b)

n/2
E=f Vi-e2sin? 0 d0, the complete elliptic integral of the second kind to modulus e;
(' for table, see Peirce (20).
a/b=1 1.25 1.5 1.75 2 2.5 3 4 6 9

k" =0.637 0.705 0.756 0.795 0.826 0.869 0.898 0.932 0.964 0.981

Ellipsoid, any ratio of the axes g, J, ¢, see Section 141:

dA
Let a,= abc/
p (@24 NY2 (32412 (c2en)12

dA
Bo -abc/
A (02+A)1/2 (b2+A)3’2 (02+)‘)l/2

N T [ UL
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TABLE IV (continued)

dA
Yo = abc/
Ao @2+ NV (024 )2 (c14n)¥?

(1) Translation parallel to the a-axis:

2 a9
\ T=— pn abe v,
. 3 2-a,
-
Xt
/i 4 ag
M’=— pn abe, k=
3 2-~a,
(2) Rotation about the a-axis:
! 9 (32-¢)? (y4-By)
T= — pn abe o?
:x;stgf_ é; 15 2b2~c?) + (82+c?) (Bo-vo)
otation
‘u/

‘ (62-c?)? (yo-B,)

4
1= P prabe(b2+¢c?),  k’=
204 - c*) + (02+¢%)? (Bo-v,)

-

For the expression of a, 8, yq in terms of elliptic integrals, see N.A.C.A. Report 210
by Tuckerman (235) or Volume I of Durand’s Aerodynamic Theory (3). Some values of & and of
k’, distinguished by a subscript to denote the axis of the motion, were given by Zahm (174).

Fluid inside ellipsoidal shell rotating about its a-axis, any relative magnitudes of g, 8, ¢
(see last figure):

o b2 242 ]
T= — pnabe ——c—)— w? as in Equation {140f], .
15 82+ ¢2
4 b2-¢c2\?2
I’'= — pn abe (6% +¢?), k= .
15 62+02
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TABLE 1V (continued)

———— - -

Solid of revolution formed by revolving about its axis of symmetry the limason defined by
r=>5b(s+cos 0)/(3% - 1) where b and s are constants. The curve for 8 = 1 is a cardioid. A

few values of k are given by Bateman in Reference (240):
$=2

8 =1 1.1 1.2 2 3 Lo

k-0.578 0.573 0.569 0.548 0.527 0.500.

. - e s - m—

B e T
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TABLE V
(From Reference 9)

NOTATION FOR TABLES II AND IV : SEE ALSO REFERENCE 9

e b c Radius of a circle or semiaxis of an ellipse or ellipsoid,
. or half-width or width of a lamina

e Ellipticity
k Coefficient of inertia, a dimensionless constant

apparent increase in mass
- .
Y

translati
In translation, mass of displaced fluid

2T 2T
k= or !

MU? M U2

apparent increase in moment of inertia
- .

In rotati k
n rotation, moment of inertia of displaced fluid
2T 2T,
kw-— or ——,
I'w? I w?
1 Moment of inertia of displaced fluid rotating as a rigid body
about the assumed axis of rotation
/g See under T,
r M’ Mass of fluid displaced by body
M See under T,
) T Kinetic energy of fluid
Ty I M Values of T, /', M’ for fluid between two planes parallel to

the motion and unit distance apart, in cases of two-
dimentional motion

v Velocity of translation of body

0 An angle in radians

P Density of the fluid, in dynamical units

@ Angular velocity of rotation of a body, in radians per
second,

g The fluid is assumed to surround the body and to be of infinite extent and at rest at
infinity, except where other conditions are indicated. In regard to units, see Sections 18, 147.







